

Antibiotic Therapy during CRRT

Fabio Silvio TACCONE, MD Department of Intensive Care Hôpital Erasme - ULB Brussels (BELGIUM)

Adapted from : Roberts and Lipman. Springer 2007

BLOOD

Principles of antibacterial dosing in continuous renal replacement therapy Crit Care Med 2009 Vol. 37, No. Gordon Choi, MBBS, FJFICM; Charles D. Gomersall, MBBS, FJFICM; Qi Tian, PhD; Gavin M. Joynt, MBBCh, FJFICM; Ross Freebairn, MBChB, FJFICM; Jeffrey Lipman, MBBCh, FJFICM, MD Blood Unbound antibiotic molecule Very large FLOW solute molecule Antibiotic and solute bound to plasma protein Unbound solute molecule Filter membrane О FLOW Dialysate

Antibiotic Dosing in Critically Ill Adult Patients Receiving Continuous Renal Replacement Therapy

Robin L. Trotman,¹ John C. Williamson,¹ D. Matthew Shoemaker,² and William L. Salzer²

108 - 207 - 302 - 409 - 409 - 108 - 207 - 207	Dosage, by type of renal replacement therapy			
Drug	CVVH	CVVHD or CVVHDF		
Amphotericin B formulation				
Deoxycholate	0.4–1.0 mg/kg q24h	0.4–1 mg/kg q24h		
Lipid complex	3–5 mg/kg q24h	3–5 mg/kg q24h		
Liposomal	3–5 mg/kg q24h	3–5 mg/kg q24h		
Acyclovir	5-7.5 mg/kg q24h	5–7.5 mg/kg q24h		
Ampicillin-sulbactam ^a	3 g q12h	3 g q8h		
Aztreonam	1–2 g q12h	2 g q12h		
Cefazolin	1–2 g q12h	2 g q12h		
Cefepime	1–2 g q12h	2 g q12h		
Cefotaxime	1–2 g q12h	2 g q12h		
Ceftazidime	1–2 g q12h	2 g q12h		
Ceftriaxone	2 g q12-24h	2 g q12–24h		
Clindamycin	600–900 mg q8h	600–900 mg q8h		
Ciprofloxacin ^b	200 mg q12h	200–400 mg q12h		
Colistin	2.5 mg/kg q48h	2.5 mg/kg q48h		
Daptomycin	4 or 6 mg/kg q48h	4 or 6 mg/kg q48h		
Fluconazole ^b	200–400 mg q24h	400-800 mg q24h°		
Imipenem-cilastatin ^d	250 mg q6h or 500 mg q8h	250 mg q6h, 500 mg q8h, or 500 mg q6h		
Levofloxacin ^b	250 mg q24h°	250 mg q24h ^e		
Linezolid ^b	600 mg q12h	600 mg q12h		
Meropenem	1 g q12h	1 g q12h		
Moxifloxacin	400 mg q24h	400 mg q24h		
Nafcillin or oxacillin	2 g q4–6h	2 g q4–6h		
Piperacillin-tazobactam ^f	2.25 g q6h	2.25–3.375 g q6h		
Ticarcillin-clavulanate ⁹	2 g q6–8h	3.1 g q6h		
Vancomycin	1 g q48h°	1 g q24h°		
Voriconazole ^h	4 mg/kg po q12h	4 mg/kg po q12h		

Is it so simple?

CLINICAL PRACTICE • CID 2005:41 (15 October) • 1159

Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: A multicentre pharmacokinetic study*

Darren M. Roberts, PhD; Jason A. Roberts, PhD; Michael S. Roberts, PhD; Xin Liu, PhD; Priya Nair, FCICM; Louise Cole, PhD; Jeffrey Lipman, MD; Rinaldo Bellomo, MD; on behalf of the RENAL Replacement Therapy Study Investigators

....

Table 4. Percentage of dosing intervals (n = 40) achieving the antibiotic therapeutic targets

Antibiotic and Number of Samples	Lower Therapeutic Target ^a (%)	Higher Therapeutic Target ^ø (%)
Meropenem $(n = 17)$	100	76
Piperacillin $(n = 7)$	100	86
Vancomycin $(n = 10)$	30	0
Ciprofloxacin $(n = 6)$	100	83

Table 2.	Dose	regimens	administered	to	the
study pa	rticipa	ants			

Antibiotic	Dose	Cases
Meropenem	500 mg every 8 hrs	8
	500 mg every 12 hrs	1
	1000 mg every 8 hrs	4
	1000 mg every 12 hrs	4
Piperacillin	4000 mg every 6 hrs	4
-	4000 mg every 8 hrs	1
	4000 mg every 12 hrs	1
	Unclear	1
Tazobactam	500 mg every 6 hrs	2
	500 mg every 8 hrs	1
	500 mg every 12 hrs	3
	Unclear	1
Vancomycin	1000 mg once daily	10
Ciprofloxacin	200 mg every 8 hrs	2
	200 mg every 12 hrs	1
	400 mg every 12 hrs	2
	400 mg every 8 hrs	1

Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: A multicentre pharmacokinetic study*

Darren M. Roberts, PhD; Jason A. Roberts, PhD; Michael S. Roberts, PhD; Xin Liu, PhD; Priya Nair, FCICM; Louise Cole, PhD; Jeffrey Lipman, MD; Rinaldo Bellomo, MD; on behalf of the RENAL Replacement Therapy Study Investigators

Sieving Coefficient

Drug's Charge

Amikacin (CAT) if albumin retention (AN)

Gibbs-Dohan Effect

Charged particles across the membrane

Membrane absorption

Sulfonated Polyacrylonitrile - Amikacin

Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: A multicentre pharmacokinetic study* Crit Care Med 2012 Vol. 40, No. 5

Darren M. Roberts, PhD; Jason A. Roberts, PhD; Michael S. Roberts, PhD; Xin Liu, PhD; Priya Nair, FCICM; Louise Cole, PhD; Jeffrey Lipman, MD; Rinaldo Bellomo, MD; on behalf of the RENAL Replacement Therapy Study Investigators

Q filtration / Q dyalisate

CVVHDF > CVVH Too High = Decreased Sc

Protein Binding

Oxacillin, Ceftriaxone, Micafungine

Residual CL

Renal and Hepatic

	ATB	Dosing	Pts	Membrane	Technique	Results
Traunmuller 2002	CEFTA	2g q 8 h	12	PSF	CVVH	MIC 4 OK MIC 8 NO
Allaouchich 1997	CEFE	2g q12h	6	AN69	CVVH	MIC 8 = 2/6 PK
Capellier 1998	PIP	4g q 8 h	10	NR	CVVH	MIC 16 = OK
Valtonen 2001	PIP	4g q8h	6	PSF	CVVHD CVVH	MIC 16 OK
Valtonen 2000	MERO	0.5g q12h 1g q12h	6	PSF	CVVHD CVVH	MIC 2 OK
Krueger 2000	MERO	0.5g q 12 h	8	PSF	CVVH	MIC 1 OK MIC 2 = 5/8
Robatel 2003	MERO	0.5g q12h 1g q12h	15	PSF	CVVHDF	MIC 2 = 1g q12h
Giles 2000	MERO	1g q 12h	10	PAN	CVVH CVVHDF	MIC $2 = OK$
Ververs 2000	MERO	$0.5 ext{g} ext{q} 12 ext{h}$	5	NR	CVVH	MIC $2 = OK$

Cefepime
Cefotaxime
Ceftazidime
Ceftriaxone
Clindamycin
Ciprofloxacin ^b
Colistin
Daptomycin
Fluconazole ^b
lmipenem-cilastatin ^d
Levofloxacin ^b
Linezolid ^o
Meropenem
Moxifloxacin
Nafcillin or oxacillin
Piperacillin-tazobactam ^f

1–2 g q12h 1–2 g q12h 1–2 g q12h 2 g q12–24h 600–900 mg q8h 200 mg q12h 2.5 mg/kg q48h 4 or 6 mg/kg q48h 200–400 mg q24h 250 mg q6h or 500 mg q8h 250 mg q24h^e 600 mg q12h 1 g q12h 400 mg q24h 2 g q4–6h 2.25 g q6h

2 g q12h 2 g q12h 2 g q12h 2 g q12-24h 600–900 mg q8h 200-400 mg q12h 2.5 mg/kg q48h 4 or 6 mg/kg q48h 400–800 mg q24h^c 250 mg q6h, 500 mg q8h, or 500 mg q6h 250 mg q24h^e 600 mg q12h 1 g q12h 400 mg q24h 2 g q4–6h 2.25-3.375 g q6h

Trotman, Clin Infect Dis 2005

CRRT : β - lactams

CRRT : β - lactams

$CRRT : \beta$ - lactams

Insufficient doses of β-lactams in

- Early phase (day 1-2) especially in Cephalo / PTAZ (12g/d)
- Higher MIC pathogens
- **PTAZ** :
- CEFE:
- MERO:
- CEFTA:

2.25g q6h 1-2g q12h 1g q12h 1-2g q12h

CI of *β*-lactams

Continuous Infusion of Beta-Lactam Antibiotics in Severe Sepsis: A Multicenter Double-Blind, Randomized Controlled Trial

Joel M. Dulhunty,¹ Jason A. Roberts,¹ Joshua S. Davis,² Steven A. R. Webb,³ Rinaldo Bellomo,⁴ Charles Gomersall,⁵ Charudatt Shirwadkar,⁶ Glenn M. Eastwood,⁴ John Myburgh,⁷ David L. Paterson,⁸ and Jeffrey Lipman¹

Endpoint	Intervention Group	Control Group	Р
Plasma antibiotic concentration >MIC	18 (81.8%) ^a	6 (28.6%) ^a	.001
Clinical cure (test of cure date)	23 (76.7%)	15 (50.0%)	.032
Clinical cure (test of cure date with treatment exclusions)	21 (70.0%)	13 (43.3%)	.037

MAJOR ARTICLE

Once-Daily Amikacin Dosing in Burn Patients Treated with Continuous Venovenous Hemofiltration[⊽]

Kevin S. Akers,^{1,2} Jason M. Cota,³ Christopher R. Frei,^{4,7} Kevin K. Chung,⁵ Katrin Mende,^{1,6} and Clinton K. Murray^{1,2*}

TABLE 1. Clinical and pharmacokinetic variables in burn patients

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Oct. 2011, p. 4639-4642

	Without CVVH	With CVVH	Р
Patients (No.)	48	12	
Age (years)	37.9 ± 20.2	28.3 ± 8.4	0.11
TBSA (%)	38.4 ± 21.8	74.0 ± 15.9	< 0.001
Weight (kg)	94.9 ± 20.7	83.3 ± 20.9	0.10
Dose (mg)	1320.0 ± 286.4	1158.3 ± 357.9	0.17
Dose (mg/kg)	14.2 ± 2.9	13.9 ± 26	0.32
$C_{\rm max}$ (µg/ml)	36.3 ± 10.2	29.1 ± 14.5	0.05
C_{\min} (µg/ml)	1.6 ± 4.3	1.5 ± 1.6	0.02
$T_{1/2}$ (h)	4.75 ± 5.24	5.49 ± 2.35	0.003
CL _{amik} (L/h)	7.8 ± 3.7	8.8 ± 8.9	0.37
AUC_{24} (mg · h/L)	239.0 ± 262.7	214.8 ± 113.8	0.52
V(L/kg)	0.60 ± 1.01	0.84 ± 1.06	0.36

Taccone FS et al. Int J Antimicrob Agents 2011

MDR pathogens

Layeux, Antimicrob Agents Chemoth 2010

MDR pathogens

Impact of Vancomycin Exposure on Outcomes in Patients With Methicillin-Resistant Staphylococcus aureus Bacteremia: Support for **Consensus Guidelines Suggested Targets**

Clinical Infectious Diseases 2011:52(8):975–981

Ravina Kullar,¹ Susan L. Davis,^{1,3} Donald P. Levine,^{2,3} and Michael J. Rybak^{1,2,3}

Characteristic $N = 308^{a}$	Vancomycin failure <i>n</i> (%)	P (vs reference category)	Nephrotoxicity ^b <i>n</i> (%	P (vs reference category)
Trough <10 mg/L (<i>n</i> =70)	46 (65.7%)	0.001	10/65 (15.4%)	.682
Trough 10–14.9 mg/L(n=90)	52 (57.8%)	0.016	13/76 (17.1%)	.476
Trough 15–20 mg/L(n=86)	34 (39.5%)	REF	10/77 (13.0%)	REF
Trough >20 mg/L(n=62)	31 (50.0%)	0.206	17/62 (27.4%)	.032

* Twelve patients without trough concentrations drawn at steady state were excluded from analysis.

^b Denominators reflect exclusion of patients with end-stage renal disease from analysis of nephrotoxicity.

But this strategy is poorly effective against MIC > 1 μ g/mL

Comparison of Conventional Dosing versus Continuous-Infusion Vancomycin Therapy for Patients with Suspected or Documented Gram-Positive Infections

JOSEPH K. JAMES,¹[†] SHIRLEY M. PALMER,¹[‡] DONALD P. LEVINE,² and MICHAEL J. RYBAK^{1,2*}

FIG. 1. Mean serum vancomycin concentrations adapted to a 24-h dosing interval. O, CD; \blacklozenge , CI. The results for the concentration-time dosage interval of 12 to 24 h was simulated from mean data for 0 to 12 h.

No evidence of better clinical outcome when CI is used

Continuous versus Intermittent Infusion of Vancomycin in Severe Staphylococcal Infections: Prospective Multicenter Randomized Study

MARC WYSOCKI,¹* FREDERIQUE DELATOUR,² FRANÇOIS FAURISSON,² ALAIN RAUSS, YVES PEAN,⁴ BENOIT MISSET,⁵ FRANK THOMAS,⁶ JEAN-FRANÇOIS TIMSIT,⁷ THOMAS SIMILOWSKI,⁸ HERVE MENTEC,⁹ LAURENCE MIER,¹⁰ DIDIER DREYFUSS,¹⁰ AND THE STUDY GROUP[†]

Reduced incidence of nephrotoxicity

No studies in septic patients about which is the best regimen during CRRT

Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy

Cecilia Covajes^a, Sabino Scolletta^a, Laura Penaccini^a, Eva Ocampos-Martinez^a, Ali Abdelhadii^a, Marjorie Beumier^a, Frédérique Jacobs^b, Daniel de Backer^a, Jean-Louis Vincent^a, Fabio Silvio Taccone^{a,*}

Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy

Cecilia Covajes^a, Sabino Scolletta^a, Laura Penaccini^a, Eva Ocampos-Martinez^a, Ali Abdelhadii^a, Marjorie Beumier^a, Frédérique Jacobs^b, Daniel de Backer^a, Jean-Louis Vincent^a, Fabio Silvio Taccone^{a,*}

35 mg/kg LD + 14 mg/kg daily

Beumier, J Antimicrob Agents 2013

Intensive Care Med (2001) 27: 665–672 DOI 10.1007/s001340100857

ORIGINAL

Steven C. Wallis Dan V. Mullany Jeffrey Lipman Claire M. Rickard Peter J. Daley

Pharmacokinetics of ciprofloxacin in ICU patients on continuous veno-venous haemodiafiltration

Colistin Methanesulfonate and Colistin Pharmacokinetics in Critically Ill Patients Receiving Continuous Venovenous Hemodiafiltration

Colistin concentrations were below the current MIC breakpoints, and the area under the concentration-time curve for the free, unbound fraction of the drug over 24 h in the steady state divided by the MIC (fAUC/MIC) was lower than recommended, suggesting that a dosage regimen of 160 mg CMS every 8 h (q8h) is inadequate

Experience with daptomycin daily dosing in ICU patients undergoing continuous renal replacement therapy

B. Preiswerk • A. Rudiger • J. Fehr • Infection (2013) 41:553–557 N. Corti

Conclusions

Loading dose only depends on:

- Target plasma level
- Vd
- Not require adaptation

No dosage adaptations:

- High protein binding
- Non renal elimination

Increase of maintenance dose:

Clinical relevant CRRT removal

Conclusions

β-lactams

- Higher than recommended drug regimens to treat less susceptible GNB
- Rapid adjustment of daily dose (48 hrs?)
- Intensity of CRRT ? Continuous Infusion ?

Aminoglycosides

- Loading dose of at least 25 mg/kg
- Dose adjustment on pathogen susceptibility (MIC)
- TDM to avoid drug accumulation

Vancomycin

- Insufficient drug concentrations with standard regimens
- CI > II ... but not better clinical response

Thank You !!!

We know everything about antibiotics except how much to give

Maxwell Finland